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Introduction

The hippocampus plays a crucial role in formation of episodic memories. Formation of precise
memories necessitates decreasing interference between representations of similar experiences so that
each experience is encoded as a discrete representation and consolidated in hippocampal-prefrontal
cortical networks. Pattern separation is a network computation that transforms similar inputs into
dissimilar outputs and is thought to undergird the hippocampus’ capacity to decrease interference
between memory representations®. The dentate gyrus (DG)-CA3/CA2 circuitry is thought to play a crucial
role in decreasing memory interference and serve as neural substrate for pattern separation?>.
Integration of a rich theory of dentate gyrus functions and development of viral and genetic tools to
precisely target adult-born dentate granule cells (abDGCs) has significantly advanced our understanding
of how abDGCs contribute to hippocampal-dependent memory functions. A consensus around a role for
abDGCs in decreasing memory interference has emerged from these efforts. This perspective evaluates
extant evidence for abDGCs in decreasing memory interference and the underlying circuit and network
mechanisms. For more general and comprehensive critiques on contribution of abDGCs to memory, the

reader is directed to several recent reviews ®°.

Dentate Gyrus and memory interference

Foundational behavioral studies showed that chemical lesioning of the DG impaired a rodent’s ability to
distinguish between closely, but not widely, separated objects, suggesting a role for the DG in decreasing
memory interference®®. These findings were interpreted through the lens of how the DG functions as a
pattern separator to decrease memory interference and support memory discrimination '3, With
development of cell-targeted genetic techniques, it was shown that synaptic inputs onto dentate granule

cells is necessary for discrimination of similar contexts and remapping in CA34. In vivo recordings in the



DG provided further evidence for DGCs and mossy cells in remapping, through changes in firing rate
within a place field (local) or change in place-field (global remapping), a circuit mechanism that supports

pattern separation®*1>1°

. Ensemble tagging studies also provided support for population-based coding
mechanisms such as global remapping in memory interference tasks 2>2*. Showing that inputs are
transformed into more dissimilar outputs, a hall mark of pattern separation, necessitates simultaneous
recording of neural activity in EC and outputs of the EC, DG and CA3. Only one study has recorded from
entorhinal cortex and downstream DG and CA3 in the same task, albeit in different animals, to
demonstrate input-output transformation in EC-DG, consistent with a role for DG in pattern
separation**®, Under certain conditions, the DG may perform roles antithetical to pattern separation.
Specifically, DGC activity was found to be invariant and stable in response to changing environments
thereby functioning as a reference scaffold that potentially incorporates multiple experiences across
time that have shared attributes 2>%¢. This duality of DG functions may reflect different subpopulations
of DGCs to support resolution of memory interference and memory updating or indexing functions 2.
These findings may also be interpreted through the lens of the re-registration hypothesis, an alternate
mechanism by which DG encodes different environments. The re-registration hypothesis posits that
contextual information is registered in population level activity underlying a context-invariant manifold

that is coupled with a small number of context-sensitive spatially tuned cells 2627,

Inspired by theory of DG function and rodent studies documenting a role for DG in decreasing memory
interference, investigators devised incidental encoding tasks that necessitate resolution of memory
interference to correctly distinguish between similar objects presented on a screen in the scanner 239,
These foundational human functional magnetic resonance imaging (fMRI) studies demonstrated that
DG-CA3/CA2 activity was increased in individuals when they saw similar items rather than repeat
presentations of previously viewed items. Notably, patient BL with a naturally occurring lesion of the DG
demonstrated impaired performance in such a task 3. Human fMRI has limited cellular resolution and
cannot distinguish contributions of specific cell populations to the BOLD signal. However, an in vivo

hippocampal recording study in monkeys revealed a sparse distributed code made up of activity of single

DG/CA3 neurons as a substrate for memory discrimination 2.

Adult-born DGCs and memory interference
Using progressively more refined and specific (pharmacology, targeted x-irradiation, pharmacogenetic,

genetic, optogenetic and chemogenetic) methodologies to manipulate the numbers and properties of



abDGCs, a substantial number of studies by many different laboratories converged upon a role for adult
hippocampal neurogenesis in reducing memory interference in spatial learning tasks such as the Morris
water maze, radial arm maze, touch screen task, spatial avoidance task, multi-object discrimination task
and contextual fear discrimination learning task 8223347(For exceptions see *® %°). By increasing overlap in
spatial features, goal-associated cues, contextual similarity, configural relationships between objects, or
creating conflicts in learning rules in these tasks, an animal’s ability to decrease memory interference is
evaluated. The underlying premise is that successful behavioral discrimination necessitates neural circuit
mechanisms that decrease overlap between neural representations. At the level of behavior, reducing
the numbers of abDGCs or silencing abDGCs increased spatial memory interference 3334394750 \whereas
increasing the numbers of abDGCs decreased spatial memory interference 82%3%37 Contrasting a large
body of work on abDGCs and spatial memory interference, much less is known about how abDGCs
contribute to resolution of social memory interference. Consistent with the role of DG-CA3/CA2 circuit in

encoding distinct representations of social experiences >

, abDGCs are necessary for formation of
memories of social experiences °*8. We showed that genetic expansion of a single cohort of 4 weeks
old, but not 8 weeks old abDGCs, decreased pro-active social memory interference to promote social
memory consolidation *°.

The differentiation of immature abDGCs into mature abDGCs involves reorganization of input
and output connectivity with diverse cell-types in EC, DG, CA3 and CA2 and changes in synaptic

physiology and synaptic plasticity (Reviewed in &6

, also see reviews in this compendium). Diligent and
systematic characterization of maturing abDGCs has led to the proposal that unique synaptic properties
and heightened synaptic plasticity of approximately 4-7 weeks old abDGCs enable these immature
neurons to make distinct contributions to memory. Indeed, this prediction was borne out in behavioral
studies designed to distinguish the contributions of immature versus mature abDGCs in decreasing

memory interference 22,37-39,41,42,45,47,59,63

. In these studies, specific ages of abDGCs were ablated,
genetically increased in number, chemogenetically or optogenetically manipulated to define stage-
specific contributions of abDGCs to decreasing memory interference.

Analysis of ensemble properties and remapping in DG-CA3 following manipulations of abDGCs
have generated key insights into how abDGCs decrease overlap in memory representations. Using
ensemble tagging approaches such as cellular compartment analysis of temporal activity by fluorescent
in situ hybridization (catFISH), genetic enhancement of adult hippocampal neurogenesis was shown to

decrease overlap between context-associated DGC ensembles under conditions of high interference

(highly similar contexts), but not same or distinct contexts (low interference)??. Chemical or genetic



suppression of adult hippocampal neurogenesis was shown to increase overlap of CA3 cellular
ensembles when mice were exposed to similar, but not distinct, contexts*®. Bidirectional regulation of
levels of neurogenesis was also found to affect sparsity of activity in DG, a circuit property conducive to
pattern separation®. Mice with increased neurogenesis showed a novelty- or mismatch-dependent
suppression of activity in DG or increase in sparsity 22 whereas genetic ablation or silencing of abDGCs
decreased sparseness under high conditions of memory interference 3#%°. Notably, several recent studies
have examined the acute effects of manipulating abDGCs in vivo on circuit and network mechanisms
governing memory interference. First, in vivo optogenetic stimulation or inhibition of immature, but not
mature, abDGCs resulted in bidirectional changes in sparsity of hippocampal DG-CA3-CA1 network
activity?’. Second, chemogenetic silencing of immature, but not mature, abDGCs impaired rate
remapping of spatial representations in DG of awake, head-fixed, behaving mice** and increased DG
activity®®. Thus, through their effects on sparsity and remapping, immature abDGCs, may decrease
memory interference by increasing the likelihood that similar experiences are registered in non-
overlapping ensembles. Increased sparsity facilitates encoding of contextual or mnemonic information in
higher dimensional neural representations registered in uncorrelated activity patterns>®%®’. Taken
together, these studies inform how immature abDGCs may contribute to pattern separation. However, a
direct role for abDGCs in pattern separation necessitates simultaneous recordings from EC, DG and CA3

in mice in which abDGCs are manipulated in vivo.

abDGC-dependent regulation of hippocampal network sparsity

How does a small number of immature abDGCs exert a disproportionate effect on network
properties such as sparsity important for reducing overlap (and interference) between principal cell
activity patterns? In a 2011 perspective, we hypothesized that immature abDGCs modulate inhibition of
mature dentate granule cells to influence sparsity and DG computations such as pattern separation®®.
Since that original conceptualization, numerous experimental studies, including those described in the
prior section, have offered ex vivo and in vivo experimental validation for a role for immature abDGCs as
modulators of hippocampal principal cell activity in DG #147:64656970 3nd downstream CA3-CA2-CA1 47°°,
These findings underscore the need to instantiate the circuit mechanisms by which abDGCs perform this
critical period-dependent modulatory role to influence activity of principal cells.

The connectivity architecture of inhibitory circuits in EC-DG-CA3-CA2 provides a scaffold for
abDGCs to regulate hippocampal network sparsity through lateral inhibition of DGCs and feed-forward
inhibition of principal cells in EC-DG, DG-CA3 and DG-CA2 7. The maturation of abDGCs is accompanied



by progressive recruitment of different classes of inhibitory neurons that sculpt dendritic (e.g.:
somatostatin) and perisomatic inhibition (e.g.: parvalbumin) of principal cells #°9¢17273 |n addition,
abDGC recruitment of mossy cells enable long-range control of DGC excitability through the
commissural-associational system®7476, Although there is evidence for direct connections between
inhibitory interneurons, mossy cells and abDGCs, direct experimental evidence showing how abDGCs
recruit mossy cells or engage distinct inhibitory circuits to reduce memory interference is still largely
lacking. As a first step to bridge this knowledge gap, we recently showed that expansion of a single
population of immature 4 weeks old, but not mature 8 weeks old, abDGCs resulted in increased feed-
forward inhibition of CA2 and CA3 principal cells, reduced social memory interference and enhanced
social memory consolidation >° (Figure 1). Expanding a single cohort of 4 weeks old abDGCs increased
the power and duration of sharp-wave ripples, a neural substrate for memory consolidation®>””78, Thus,
we demonstrate how immature abDGCs preferentially recruit a circuit mechanism, parvalbumin-
inhibitory neuron mediated feed-forward inhibition, to regulate principal cell activity®. Because feed-
forward inhibition determines spiking fidelity of principal cells and expands the dynamic range of
principal cell firing”®®, such a circuit mechanism may enable immature abDGCs to increase hippocampal
network sparsity and population dimensionality to facilitate discrimination*’ (Figure 1).

60,7581 3nd successful

Immature abDGCs compete with mature abDGCs for perforant path inputs
synaptic integration of abDGCs may also increase sparsity in the DG 2. Manipulations that promote
synaptic integration of immature abDGCs also decrease memory interference but not memory forgetting
%9 Thus, synaptic integration of adult-born DGCs may decrease memory interference through

sparsification of DG activity consistent with theory of input-expansion coding? (Figure 1).

Contribution of abDGCs to decreasing memory interference in humans?
The perdurance of hippocampal neurogenesis throughout the lifespan of higher mammals continues to
be debated # and conservative estimates suggest a precipitous decline in hippocampal neurogenesis in

8485 and humans %¢

early life. However, direct and indirect evidence from non-human primates
1 respectively, suggest that abDGCs exhibit protracted maturation or neoteny such that abDGCs persist
in an immature experience-modifiable state for a long period of time, from many months to years. Given
what we have learned about the critical contributions of immature abDGCs to decreasing memory
interference, neoteny of abDGCs in higher mammals may represent an evolutionary adaptation to

compensate for the decline in neurogenesis. We recently proposed that neurogenesis in the DG

increases the capacity and flexibility to generate indexes of experiences®?2. Neoteny of abDGCs may



facilitate the acquisition of features during maturation and thereby increase the diversity of information
registered in properties and input specificity of individual DGCs. Modulation of principal cell activity by
abDGCs may reduce interference between indexes in the DG and increase fidelity of memory encoding
and retrieval. Formal evidence for how neurogenesis contributes to the library of indexes in the DG is
still lacking. Modeling neoteny of abDGCs in rodent models as we have recently done will permit a

critical evaluation of this thesis.

The role of DG in decreasing memory interference is conserved from mice to humans. Currently, we
cannot non-invasively quantify or track abDGCs in vivo. How then does one examine the contribution of
abDGCs to cognition? Critical to understanding how abDGCs contribute to memory will come from
investigations of connectivity and physiology of non-human primate and human DG-CA3/CA2 circuitry
9394 Ongoing efforts suggest that the human DG-CAS3 circuit exhibits conserved and divergent properties
relative to rodents with important implications for pattern separation and pattern completion®*%4,
Identification of cell-specific enhancers that restrict cargo expression (reporters, actuators) to immature
abDGCs will enable instantiation of circuit mechanisms. Ultimately, such efforts will determine the

extent of conservation of this unique form of circuit and network plasticity in homo sapiens.
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Figure 1. Circuit mechanisms by which immature abDGCs decrease memory interference. For
illustration, we focus on social memory interference. a. Social recognition necessitates distinction of new
(orange) from previously encoded social representations (cyan) and reduction of interference by
previously encoded social representations (purple). b-c. Immature adult-born dentate granule cells
(abDGC) facilitate decorrelation of overlapping representations into distinct representations through
increase in sparsity and high dimensionality coding in DG-CA3-CA2. Entorhinal cortex (EC) inputs are
decorrelated in DG via feedforward inhibition and lateral inhibition. abDGCs compete with mature DGCs
for perforant path inputs, exerting high levels of lateral inhibition onto other DGCs through local
inhibitory microcircuits; this facilitates sparsification in the DG which establishes non-overlapping
engrams for each social experience. abDGCs recruit feedforward inhibition to increase sparsity in
downstream CA3 and CA2, support high dimensionality coding and facilitate transfer of engrams in non-
overlapping populations of CA3 and CA2 principal cells. Following decorrelation of engrams of social
experiences in DG-CA3/CA2, each representation is consolidated in independent cortical ensembles.
Through these mechanisms, high levels of adult neurogenesis can reduce memory interference. d-e.
Circuits with low levels of neurogenesis exhibit decreased synaptic competition, reduced feedforward
inhibition in DG-CA3/CA2, decreased lateral inhibition and sparsity. This results in neurons with
generalized encoding across social experiences, low dimensionality coding and increased interference.
This increased interference results in overlap and linkage of representations of social experience during
memory consolidation in the cortex.
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