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Introduc7on 

The hippocampus plays a crucial role in forma;on of episodic memories1. Forma;on of precise 

memories necessitates decreasing interference between representa;ons of similar experiences so that 

each experience is encoded as a discrete representa;on and consolidated in hippocampal-prefrontal 

cor;cal networks. Pa>ern separa;on is a network computa;on that transforms similar inputs into 

dissimilar outputs and is thought to undergird the hippocampus’ capacity to decrease interference 

between memory representa;ons2. The dentate gyrus (DG)-CA3/CA2 circuitry is thought to play a crucial 

role in decreasing memory interference and serve as neural substrate for pa>ern separa;on2-5. 

Integra;on of a rich theory of dentate gyrus func;ons and development of viral and gene;c tools to 

precisely target adult-born dentate granule cells (abDGCs) has significantly advanced our understanding 

of how abDGCs contribute to hippocampal-dependent memory func;ons.  A consensus around a role for 

abDGCs in decreasing memory interference has emerged from these efforts. This perspec;ve evaluates 

extant evidence for abDGCs in decreasing memory interference and the underlying circuit and network 

mechanisms. For more general and comprehensive cri;ques on contribu;on of abDGCs to memory, the 

reader is directed to several recent reviews 6-9. 

 

Dentate Gyrus and memory interference 

Founda;onal behavioral studies showed that chemical lesioning of the DG impaired a rodent’s ability to 

dis;nguish between closely, but not widely, separated objects, sugges;ng a role for the DG in decreasing 

memory interference10.  These findings were interpreted through the lens of how the DG func;ons as a 

pa>ern separator to decrease memory interference and support memory discrimina;on 11-13.  With 

development of cell-targeted gene;c techniques, it was shown that synap;c inputs onto dentate granule 

cells is necessary for discrimina;on of similar contexts and remapping in CA314.  In vivo recordings in the 
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DG provided further evidence for DGCs and mossy cells in remapping, through changes in firing rate 

within a place field (local) or change in place-field (global remapping), a circuit mechanism that supports 

pa>ern separa;on2,3,15-19.  Ensemble tagging studies also provided support for popula;on-based coding 

mechanisms such as global remapping in memory interference tasks 20-24.  Showing that inputs are 

transformed into more dissimilar outputs, a hall mark of pa>ern separa;on, necessitates simultaneous 

recording of neural ac;vity in EC and outputs of the EC, DG and CA3.  Only one study has recorded from 

entorhinal cortex and downstream DG and CA3 in the same task, albeit in different animals, to 

demonstrate input-output transforma;on in EC-DG, consistent with a role for DG in pa>ern 

separa;on4,18. Under certain condi;ons, the DG may perform roles an;the;cal to pa>ern separa;on. 

Specifically, DGC ac;vity was found to be invariant and stable in response to changing environments 

thereby func;oning as a reference scaffold that poten;ally incorporates mul;ple experiences across 

;me that have shared a>ributes 25,26.  This duality of DG func;ons may reflect different subpopula;ons 

of DGCs to support resolu;on of memory interference and memory upda;ng or indexing func;ons 3,8. 

These findings may also be interpreted through the lens of the re-registra;on hypothesis, an alternate 

mechanism by which DG encodes different environments.  The re-registra;on hypothesis posits that 

contextual informa;on is registered in popula;on level ac;vity underlying a context-invariant manifold 

that is coupled with a small number of context-sensi;ve spa;ally tuned cells 26,27.   

  

Inspired by theory of DG func;on and rodent studies documen;ng a role for DG in decreasing memory 

interference, inves;gators devised incidental encoding tasks that necessitate resolu;on of memory 

interference to correctly dis;nguish between similar objects presented on a screen in the scanner 28-30. 

These founda;onal human func;onal magne;c resonance imaging (fMRI) studies demonstrated that 

DG-CA3/CA2 ac;vity was increased in individuals when they saw similar items rather than repeat 

presenta;ons of previously viewed items. Notably, pa;ent BL with a naturally occurring lesion of the DG 

demonstrated impaired performance in such a task 31. Human fMRI has limited cellular resolu;on and 

cannot dis;nguish contribu;ons of specific cell popula;ons to the BOLD signal.  However, an in vivo 

hippocampal recording study in monkeys revealed a sparse distributed code made up of ac;vity of single 

DG/CA3 neurons as a substrate for memory discrimina;on 32.   

  

Adult-born DGCs and memory interference 

Using progressively more refined and specific (pharmacology, targeted x-irradia;on, pharmacogene;c, 

gene;c, optogene;c and chemogene;c) methodologies to manipulate the numbers and proper;es of 
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abDGCs, a substan;al number of studies by many different laboratories converged upon a role for adult 

hippocampal neurogenesis in reducing memory interference in spa;al learning tasks such as the Morris 

water maze, radial arm maze, touch screen task, spa;al avoidance task, mul;-object discrimina;on task 

and contextual fear discrimina;on learning task 8,22,33-47(For excep;ons see 48 49). By increasing overlap in 

spa;al features, goal-associated cues, contextual similarity, configural rela;onships between objects, or 

crea;ng conflicts in learning rules in these tasks, an animal’s ability to decrease memory interference is 

evaluated. The underlying premise is that successful behavioral discrimina;on necessitates neural circuit 

mechanisms that decrease overlap between neural representa;ons.  At the level of behavior, reducing 

the numbers of abDGCs or silencing abDGCs increased spa;al memory interference 33,34,39-47,50, whereas 

increasing the numbers of abDGCs decreased spa;al memory interference 8,22,36,37.  Contras;ng a large 

body of work on abDGCs and spa;al memory interference, much less is known about how abDGCs 

contribute to resolu;on of social memory interference. Consistent with the role of DG-CA3/CA2 circuit in 

encoding dis;nct representa;ons of social experiences 51-56, abDGCs are necessary for forma;on of 

memories of social experiences 57,58.  We showed that gene;c expansion of a single cohort of 4 weeks 

old, but not 8 weeks old abDGCs, decreased pro-ac;ve social memory interference to promote social 

memory consolida;on 59.      

The differen;a;on of immature abDGCs into mature abDGCs involves reorganiza;on of input 

and output connec;vity with diverse cell-types in EC, DG, CA3 and CA2 and changes in synap;c 

physiology and synap;c plas;city (Reviewed in 8,59-62, also see reviews in this compendium). Diligent and 

systema;c characteriza;on of maturing abDGCs has led to the proposal that unique synap;c proper;es 

and heightened synap;c plas;city of approximately 4-7 weeks old abDGCs enable these immature 

neurons to make dis;nct contribu;ons to memory. Indeed, this predic;on was borne out in behavioral 

studies designed to dis;nguish the contribu;ons of immature versus mature abDGCs in decreasing 

memory interference 22,37-39,41,42,45,47,59,63.  In these studies, specific ages of abDGCs were ablated, 

gene;cally increased in number, chemogene;cally or optogene;cally manipulated to define stage-

specific contribu;ons of abDGCs to decreasing memory interference.   

 Analysis of ensemble proper;es and remapping in DG-CA3 following manipula;ons of abDGCs 

have generated key insights into how abDGCs decrease overlap in memory representa;ons. Using 

ensemble tagging approaches such as cellular compartment analysis of temporal ac;vity by fluorescent 

in situ hybridiza;on (catFISH), gene;c enhancement of adult hippocampal neurogenesis was shown to 

decrease overlap between context-associated DGC ensembles under condi;ons of high interference 

(highly similar contexts), but not same or dis;nct contexts (low interference)22. Chemical or gene;c 
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suppression of adult hippocampal neurogenesis was shown to increase overlap of CA3 cellular 

ensembles when mice were exposed to similar, but not dis;nct, contexts43. Bidirec;onal regula;on of 

levels of neurogenesis was also found to affect sparsity of ac;vity in DG, a circuit property conducive to 

pa>ern separa;on64. Mice with increased neurogenesis showed a novelty- or mismatch-dependent 

suppression of ac;vity in DG or increase in sparsity 22 whereas gene;c abla;on or silencing of abDGCs 

decreased sparseness under high condi;ons of memory interference 34,65. Notably, several recent studies 

have examined the acute effects of manipula;ng abDGCs in vivo on circuit and network mechanisms 

governing memory interference.  First, in vivo optogene;c s;mula;on or inhibi;on of immature, but not 

mature, abDGCs resulted in bidirec;onal changes in sparsity of hippocampal DG-CA3-CA1 network 

ac;vity47.  Second, chemogene;c silencing of immature, but not mature, abDGCs impaired rate 

remapping of spa;al representa;ons in DG of awake, head-fixed, behaving mice41 and increased DG 

ac;vity63. Thus, through their effects on sparsity and remapping, immature abDGCs, may decrease 

memory interference by increasing the likelihood that similar experiences are registered in non-

overlapping ensembles. Increased sparsity facilitates encoding of contextual or mnemonic informa;on in 

higher dimensional neural representa;ons registered in uncorrelated ac;vity pa>erns5,66,67. Taken 

together, these studies inform how immature abDGCs may contribute to pa>ern separa;on. However, a 

direct role for abDGCs in pa>ern separa;on necessitates simultaneous recordings from EC, DG and CA3 

in mice in which abDGCs are manipulated in vivo.   

 

abDGC-dependent regula7on of hippocampal network sparsity  

How does a small number of immature abDGCs exert a dispropor;onate effect on network 

proper;es such as sparsity important for reducing overlap (and interference) between principal cell 

ac;vity pa>erns? In a 2011 perspec;ve, we hypothesized that immature abDGCs modulate inhibi;on of 

mature dentate granule cells to influence sparsity and DG computa;ons such as pa>ern separa;on68. 

Since that original conceptualiza;on, numerous experimental studies, including those described in the 

prior sec;on, have offered ex vivo and in vivo experimental valida;on for a role for immature abDGCs as 

modulators of hippocampal principal cell ac;vity in DG 41,47,64,65,69,70 and downstream CA3-CA2-CA1 47,59. 

These findings underscore the need to instan;ate the circuit mechanisms by which abDGCs perform this 

cri;cal period-dependent modulatory role to influence ac;vity of principal cells.  

  The connec;vity architecture of inhibitory circuits in EC-DG-CA3-CA2 provides a scaffold for 

abDGCs to regulate hippocampal network sparsity through lateral inhibi;on of DGCs and feed-forward 

inhibi;on of principal cells in EC-DG, DG-CA3 and DG-CA2 8,71.  The matura;on of abDGCs is accompanied 
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by progressive recruitment of different classes of inhibitory neurons that sculpt dendri;c (e.g.: 

somatosta;n) and perisoma;c inhibi;on (e.g.: parvalbumin) of principal cells 8,59-61,72,73. In addi;on, 

abDGC recruitment of mossy cells enable long-range control of DGC excitability through the 

commissural-associa;onal system8,74-76. Although there is evidence for direct connec;ons between 

inhibitory interneurons, mossy cells and abDGCs, direct experimental evidence showing how abDGCs 

recruit mossy cells or engage dis;nct inhibitory circuits to reduce memory interference is s;ll largely 

lacking.  As a first step to bridge this knowledge gap, we recently showed that expansion of a single 

popula;on of immature 4 weeks old, but not mature 8 weeks old, abDGCs resulted in increased feed-

forward inhibi;on of CA2 and CA3 principal cells, reduced social memory interference and enhanced 

social memory consolida;on 59 (Figure 1).  Expanding a single cohort of 4 weeks old abDGCs increased 

the power and dura;on of sharp-wave ripples, a neural substrate for memory consolida;on59,77,78. Thus, 

we demonstrate how immature abDGCs preferen;ally recruit a circuit mechanism, parvalbumin-

inhibitory neuron mediated feed-forward inhibi;on, to regulate principal cell ac;vity59. Because feed-

forward inhibi;on determines spiking fidelity of principal cells and expands the dynamic range of 

principal cell firing79,80, such a circuit mechanism may enable immature abDGCs to increase hippocampal 

network sparsity and popula;on dimensionality to facilitate discrimina;on47 (Figure 1).   

 Immature abDGCs compete with mature abDGCs for perforant path inputs 60,75,81 and successful 

synap;c integra;on of abDGCs may also increase sparsity in the DG 82. Manipula;ons that promote 

synap;c integra;on of immature abDGCs also decrease memory interference but not memory forgehng 
59. Thus, synap;c integra;on of adult-born DGCs may decrease memory interference through 

sparsifica;on of DG ac;vity consistent with theory of input-expansion coding2 (Figure 1).   

 

Contribu7on of abDGCs to decreasing memory interference in humans? 

The perdurance of hippocampal neurogenesis throughout the lifespan of higher mammals con;nues to 

be debated 83 and conserva;ve es;mates suggest a precipitous decline in hippocampal neurogenesis in 

early life.  However, direct and indirect evidence from non-human primates84,85 and humans 86-

91,respec;vely,  suggest that abDGCs exhibit protracted matura;on or neoteny such that abDGCs persist 

in an immature experience-modifiable state for a long period of ;me, from many months to years.  Given 

what we have learned about the cri;cal contribu;ons of immature abDGCs to decreasing memory 

interference, neoteny of abDGCs in higher mammals may represent an evolu;onary adapta;on to 

compensate for the decline in neurogenesis. We recently proposed that neurogenesis in the DG 

increases the capacity and flexibility to generate indexes of experiences8,92.  Neoteny of abDGCs may 
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facilitate the acquisi;on of features during matura;on and thereby increase the diversity of informa;on 

registered in proper;es and input specificity of individual DGCs. Modula;on of principal cell ac;vity by 

abDGCs may reduce interference between indexes in the DG and increase fidelity of memory encoding 

and retrieval.  Formal evidence for how neurogenesis contributes to the library of indexes in the DG is 

s;ll lacking.  Modeling neoteny of abDGCs in rodent models as we have recently done will permit a 

cri;cal evalua;on of this thesis.  

 

The role of DG in decreasing memory interference is conserved from mice to humans.  Currently, we 

cannot non-invasively quan;fy or track abDGCs in vivo.  How then does one examine the contribu;on of 

abDGCs to cogni;on?  Cri;cal to understanding how abDGCs contribute to memory will come from 

inves;ga;ons of connec;vity and physiology of non-human primate and human DG-CA3/CA2 circuitry 
93,94.  Ongoing efforts suggest that the human DG-CA3 circuit exhibits conserved and divergent proper;es 

rela;ve to rodents with important implica;ons for pa>ern separa;on and pa>ern comple;on93,94.  

Iden;fica;on of cell-specific enhancers that restrict cargo expression (reporters, actuators) to immature 

abDGCs will enable instan;a;on of circuit mechanisms.  Ul;mately, such efforts will determine the 

extent of conserva;on of this unique form of circuit and network plas;city in homo sapiens.   
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Figure 1. Circuit mechanisms by which immature abDGCs decrease memory interference.  For 
illustra;on, we focus on social memory interference. a. Social recogni;on necessitates dis;nc;on of new 
(orange) from previously encoded social representa;ons (cyan) and reduc;on of interference by 
previously encoded social representa;ons (purple). b-c. Immature adult-born dentate granule cells 
(abDGC) facilitate decorrela;on of overlapping representa;ons into dis;nct representa;ons through 
increase in sparsity and high dimensionality coding in DG-CA3-CA2. Entorhinal cortex (EC) inputs are 
decorrelated in DG via feedforward inhibi;on and lateral inhibi;on. abDGCs compete with mature DGCs 
for perforant path inputs, exer;ng high levels of lateral inhibi;on onto other DGCs through local 
inhibitory microcircuits; this facilitates sparsifica;on in the DG which establishes non-overlapping 
engrams for each social experience. abDGCs recruit feedforward inhibi;on to increase sparsity in 
downstream CA3 and CA2, support high dimensionality coding and facilitate transfer of engrams in non-
overlapping popula;ons of CA3 and CA2 principal cells. Following decorrela;on of engrams of social 
experiences in DG-CA3/CA2, each representa;on is consolidated in independent cor;cal ensembles. 
Through these mechanisms, high levels of adult neurogenesis can reduce memory interference. d-e. 
Circuits with low levels of neurogenesis exhibit decreased synap;c compe;;on, reduced feedforward 
inhibi;on in DG-CA3/CA2, decreased lateral inhibi;on and sparsity. This results in neurons with 
generalized encoding across social experiences, low dimensionality coding and increased interference. 
This increased interference results in overlap and linkage of representa;ons of social experience during 
memory consolida;on in the cortex.  
 
 
 
 

 


