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REVIEW

Targeting Adult Neurogenesis to Optimize Hippocampal
Circuits in Aging

Kathleen M. McAvoy1,2,3 & Amar Sahay1,2,3,4

# The American Society for Experimental NeuroTherapeutics, Inc. 2017

Abstract Millions of individuals suffer from age-related
cognitive decline, defined by impaired memory precision.
Increased understanding of hippocampal circuit mecha-
nisms underlying memory formation suggests a role for
computational processes such as pattern separation and
pattern completion in memory precision. We describe evi-
dence implicating the dentate gyrus-CA3 circuit in pattern
separation and completion, and examine alterations in den-
tate gyrus-CA3 circuit structure and function with aging.
We discuss the role of adult hippocampal neurogenesis in
memory precision in adulthood and aging, as well as the
circuit mechanisms underlying the integration and
encoding functions of adult-born dentate granule cells.
We posit that understanding these circuit mechanisms will
permit generation of circuit-based endophenotypes that
will edify new therapeutic strategies to optimize hippocam-
pal encoding during aging.
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Introduction

Theworld’s population is aging,with ~20%of theUSpopulation
expected to be older than 65 years in 2030 (up from 13% in
2010). Aging is associated with impairments across cognitive
domains, including memory, attention, and executive function
[1–4]. Cognitive decline affects a large portion of those > 65,
where 12% of individuals self-reported increasedmemory loss in
the preceding year [5] and nearly 60% of elderly study subjects
showed cognitive decline over an 8-year study [6]. Clinically,
memory impairments are diagnosed by performance on a num-
ber of tests, as well as self- and family reports [7, 8]. Aged
individuals show select impairments in tasks requiring encoding
new memories of events, facts, or contextual and spatial infor-
mation, whereas short-term memory, autobiographical memory,
and semantic and procedural knowledge remain relatively stable
(reviewed in [1, 9]).

Aging also increases the incidence of pathological neu-
rodegenerative diseases, including Alzheimer’s disease
and mild cognitive impairment (MCI), a clinical criteria
used for early stage cognitive dysfunction preceding
Alzheimer’s disease. Similar memory impairments are
seen in normal aging and MCI, although the deficits in
MCI generally exceed those found in normally aging indi-
viduals [10]. Considerable evidence implicates dysfunc-
tion of the medial temporal lobe in age-associated memory
impairments and MCI [1, 11, 12]. Notably, by examining
aging across species that do not show neurodegenerative
disease, age-related and disease-related impairments can
be disentangled. Impaired memory has been described as
a symptom of normal aging as it occurs across species [9].
Dissociating normal and pathological aging allows for the
testing of empirical models to determine the neuroanatom-
ical and functional basis of behavioral impairments, and
the efficacy of age- or disease-specific treatments.
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The identification of new therapeutics for age-associated
memory impairments necessitates identification of underlying
core neurobiological changes, both cellular and circuit-based.
Hippocampal circuits support declarative or explicit memory
function, and in humans this type of memory includes mem-
ories with a what–when–where component, including person-
al experiences and events that can be recalled and described,
as well as spatial memory. In humans, our ability to assess
age-related hippocampal changes is limited to behavioral mea-
sures, imaging analysis [including magnetic resonance imag-
ing (MRI)/functional MRI (fMRI)], and postmortem histolog-
ical assessment, whereas animal models with homologous
hippocampal functions [13, 14], permit greater ability to inter-
rogate the causal relationships between circuitry and behavior.

Here, we will present the case that disruption of dentate
gyrus (DG)- and CA3-dependent operations such as pattern
separation and completion, which are thought to underlie ep-
isodic memory formation, contribute to age-associated mem-
ory impairments. We describe evidence implicating the DG–
CA3 circuit in pattern separation and completion and examine
alterations in DG–CA3 circuit structure and function with
aging. We discuss the role of adult hippocampal neurogenesis
in memory precision in adulthood and aging, as well as the
circuit mechanisms underlying the integration and functions
of adult-born dentate granule cells (DGCs). We posit that un-
derstanding these circuit mechanisms will edify new circuit -
based strategies to optimize hippocampal encoding in aged
individuals. Furthermore, such efforts will permit generation
of circuit-based endophenotypes that facilitate objective mon-
itoring of symptom progression and treatment efficacy.

Memory Precision is Impaired With Aging

Episodic memory is particularly vulnerable to the deleterious
effects of age. Older adults show deficits relative to young
adults on tasks that require the formation of new episodic
memories, including those with spatial and contextual compo-
nents (reviewed in [1, 13, 15]). The literature on age-related
memory impairments across species has been reviewed in
detail elsewhere [13, 14], and data indicate that these memory
deficits cannot be attributed to deficits in sensory, motor, or
motivational deficits [16–18].

While many facets of memory are impaired with aging,
growing evidence supports significant alterations in behaviors
that require distinguishing among experiences that share sim-
ilar elements, or conditions that require resolution of memory
interference [14]. With aging, key changes in episodic mem-
ories are: 1) loss of contextual details (e.g., spatial or visual
detail about stimulus location [19]); 2) susceptibility to inter-
ference (e.g., difficulty in remembering target stimuli when
similar items or Blures^ are used [20, 21]); and 3) a decreased
response to new stimuli (e.g., impairments in identifying
whether an item is new [22–24]; reviewed in [14, 25]).

These deficits lead to specific memory errors, such as Bfalse
recognition^ and a phenotype of Bmemory rigidity^ [26]. It
has been proposed that age-related deficits in memory preci-
sion may be due to alterations in neural mechanisms underly-
ingmemory formation and retrieval, such as pattern separation
and completion (reviewed in [14, 25, 26]).

The DG–CA3 Circuit Supports Pattern Separation
and Pattern Completion in Rodents and Humans

How does the hippocampus support creating new episodic
memories that are distinct from similar, previously stored
memories? Pattern separation is the computational process
of making similar inputs less similar in output (i.e., orthogo-
nalization) [27–29]. When inputs are very different, pattern
separation is not required as the differences in input are suffi-
cient to generate divergent outputs. However, when inputs are
very similar (and thus likely to generate similar outputs) a
computational process to generate distinct outputs is required
to disambiguate these similar inputs. For memory encoding,
this process is hypothesized to include encoding of new mem-
ories as nonoverlapping neuronal ensembles. Complementing
the process of pattern separation is the process of pattern com-
pletion, defined as a network’s ability to recall a complete
representation when presented with incomplete or degraded
input. While pattern separation and pattern completion are
complementary processes, the DG performs pattern separa-
tion, and CA3 performs pattern separation or completion
[30–33] (reviewed in [34, 35]). Recordings from DG and
CA3 suggest that the DG automatically orthogonalizes inputs,
and that it is the autoassociative network in CA3 that deter-
mines whether these inputs will be stored as a new memory
pattern or if an old memory will be retrieved [35, 36].
Therefore, generating sufficiently orthogonalized information
in DG and exporting this to CA3 is critical to avoid inappro-
priate pattern completion and incorrect memory retrieval.

Pioneering behavioral studies uncovered a role for the DG–
CA3 circuit in resolution of memory interference (reviewed in
[36]). Rats with selective lesions of the CA3 region were
impaired in spatial discrimination of objects closely or widely
spaced apart [37], whereas DG lesions produced impairments
only at small separations, and CA1 lesions did not affect dis-
crimination [38]. DG-specific N-methyl-D-aspartate receptor
1 deletion impaired discrimination of similar contexts [39],
whereas CA3-specific deletion of NR1 revealed that CA3 is
critical for memory retrieval when inputs are degraded [40].
These findings are consistent with the hypothesized role for
the DG in pattern separation [27, 35] and with the postulated
role for CA3 in pattern completion, which was based on its
recurrent collaterals allowing the region to act as an
autoassociative network (Fig. 1) [41–43].

Evidence for pattern separation requires demonstration of
transformation of inputs into more divergent outputs at a
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neural level. Pattern separation in the DG is supported by
encoding of similar inputs by differences in firing rates of
place cells (rate remapping) or recruitment of nonoverlapping
ensembles of neurons [global remapping (Fig. 1); [33, 35, 44,
45]]. Knierim et al. [35] performed simultaneous recordings
from entorhinal cortex (EC) and DG, and DG and CA3, as rats
explored an environment in which local and distal environ-
mental cues were gradually morphed. They showed that the
DG remaps in response to small changes in context, under
conditions where remapping in EC and CA3 remained un-
changed [35, 44, 46]. A previous study had found that the
DG also undergoes rate remapping for subtle changes in en-
vironment under conditions in which EC grid cell activity was

unchanged [33]. Interestingly, the active cells with multiple
place fields recorded in this study have been suggested to be
hilar mossy cells and not DGCs [47–50]. Thus, DGCs and
mossy cells may both contribute to pattern separation in the
DG through different mechanisms.

Human studies have demonstrated that the DG–CA3 cir-
cuit is preferentially engaged under conditions of high mem-
ory interference [51–54]. Human imaging studies have taken
advantage of the fact that repetition of the same stimuli sup-
presses blood oxygen level-dependent responses upon subse-
quent presentation (the repetition–suppression effect), and
tested individuals with presentation of the same visual stimuli,
novel stimuli (or Bfoils^), or similar stimuli (Blures^) while the

A B

C D

Fig. 1 Dentate gyrus (DG)–CA3 circuitry and pattern separation. (a)
Schematic description of DG-CA3 blood oxygen level-dependent
responses (left axis, blue and orange lines) and discrimination accuracy
(right axis, dashed lines) in adults and aged individuals in a task in which
image stimuli were presented andwere varied on a continuum from repeat
presentation, to similar items or lures, to novel foils (adapted from [14,
26], based on data presented in [23, 24, 72]). Aged individuals showed a
failure to activate the DG–CA3 region when similar items or lures were
presented. When explicitly tasked with identifying the images as novel or
familiar, aged individuals performed more poorly when the images were
most similar. (b) The DG performs pattern separation on incoming inputs
from the entorhinal cortex (EC). The large number of DGCs relative to
the EC (Binput expansion^) and the sparse activation of the DG are
thought to facilitate the orthogonalization of similar inputs into distinct

outputs. (c) The DG is modified by both incorporation of adult-born
DGCs and by aging. 1) Adult-born DGCs may be more responsive to
weak perforant path inputs. 2) Adult-born DGCs recruit feedback
inhibition (FBI) onto the DG, and (3) feed-forward inhibition (FFI)
onto CA3. 4) Adult-born DGCs exhibit increased plasticity at the DG–
CA3 synapse. 5) In aged animals, perforant path inputs to DG are weaker,
and feedback inhibition (6), and feedforward inhibition (8), may be
decreased. 7) CA3 exhibites higher basal activity and hyperexcitability.
(d) Adult-born DGCs promote population- based coding in DG and CA3.
Enhancing adult hippocampal neurogenesis (ngs) decreases overlap
between DG ensembles encoding similar contexts [118]. Decreasing
adult hippocampal neurogenesis increases overlap between CA3
ensembles encoding similar contexts [146]
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subjects were engaged in an unrelated labeling task (e.g., cat-
egorizing objects as outdoors or indoors). Equivalent activa-
tion in response to targets and similar lures suggests hippo-
campal engagement for discrimination of the lures as novel
stimuli, whereas the repetition–suppression effect indicates
that the stimuli were perceived as repeat presentations. In con-
trast to CA1 and EC, similar levels of DG/CA3 activation in
response to previously seen stimuli and lures was observed,
indicating preferential engagement of DG/CA3 to discrimina-
tion of similar stimuli [51, 53]. Advances in imaging technol-
ogy that overcome limitations in resolution will enable deter-
mination of input–output EC–DG transformations during
these tasks.

Interestingly, a new study describes a patient, BL, with
bilateral DG damage [55]. When given a visual recognition
task similar to that described above, BL showed similar per-
formance to controls when identifying novel and similar stim-
uli (lures), indicating intact recognition memory, but was 5
times more likely than controls to identify lures as previously
seen stimuli. This indicates a deficit in resolution of interfer-
ence, and was interpreted by the authors as a failure of pattern
separation. However, in a second test that evaluates recogni-
tion memory performance with 10 drawings of rooms, 5 of
which were familiar and 5 of which were novel, presented
unmasked or masked to varying degrees, BL also showed a
strong tendency to identify incomplete scenes as familiar,
even when they were novel. The authors interpreted his poor
performance identifying the unmasked images as indicative of
a failure of pattern separation, as the image similarity presum-
ably generated memory interference. Further, the authors note
that patient BL’s significantly worse performance on the de-
graded inputs (masked incomplete images) suggests a further
bias toward pattern completion. These observations are con-
sistent with the hypothesis that orthogonalized inputs from
DG to CA3 are necessary to prevent CA3’s attractor network
from reactivating a previously storedmemory pattern [35, 36].

Age-Related Changes in DG–CA3 Functions in Rodents

Aged rats demonstrate selective deficits in tasks requiring res-
olution of memory interference. Using a spatial memory test
in which the animal had to distinguish a correct, learned re-
ward arm from either a nonadjacent or adjacent nonreward
Bbait^ arm, Gracian et al. [56] found that aged rats showed a
particular impairment (relative to adult rats) when the
nonreward Bbait^ arm was adjacent to the correct reward arm.

Deficits in behavioral memory precision may be due to
failure to reactivate and remap neuronal ensembles.
Experimental data in rodents substantiates the hypothesis that
ensembles of cells encode information about spatial contexts.
Reactivation of unique ensembles of DGCs previously acti-
vated (expressing the immediate early gene, cfos) by a partic-
ular context is sufficient to trigger context-specific behavior

[57, 58]. In rats, CA3 and CA1 pyramidal neurons and DGCs
fire during traversal of a limited portion of an environment
(the Bplace field^ of the cell; e.g. [59]). By reconstructing
the firing patterns of many simultaneously recorded cells
(the place cell map), the animal’s location within the environ-
ment can be predicted (e.g. [60]). These maps are modified by
experience-dependent changes in synaptic efficacy to allow
for association of specific memory features (reviewed in [61]).

Aged rats fail to retrieve the same place cell Bmap^ in
CA1—retrieving the incorrect place field sequence for a sec-
ond visit to an environment more often than do young rats
with equivalent experience [62]. Further, aged rats failed to
realign place fields to room cues, a feature that correlated with
poor learning of a goal location [63]. Aged rats also showed
reduced changes to CA3/CA1 place fields with alteration of
the environment [64, 65], and showed reduced remapping in
an entirely new context [65, 66]; CA3 cells, in particular,
showed this Brepresentational rigidity or inflexible
remapping^ and higher firing rates, in general [67]. To recon-
cile reports of incorrect map retrieval [62] and representational
rigidity [64–67], Wilson et al. [68] recorded CA3/CA1 place
cells during sequential exposures to a novel environment.
They found that when aged rats were exposed to a new envi-
ronment, CA1/CA3 place cell firing was initially unchanged,
requiring greater environmental change to remap, followed by
a period where the place cells became linked to the external
cues (delayed relative to adult rats; see also [63]), and, finally,
followed by a period where place cell ensembles showed in-
correct map retrieval, analogous to that described by Barnes
et al. [62] (reviewed in [9, 26]).

Using the catFISH technique (cellular compartment analy-
sis of temporal activation using fluorescent in situ hybridiza-
tion [69]) to compare ensemble overlap in the adult and aged
DG upon re-exposure to the same context or upon exposure to
a different context, Marrone et al. [70] found that there is less
overlap in activation of DGCs upon re-exposure to the same
context, indicating a failure to retrieve the appropriate map,
reminiscent of CA3 place cell activity patterns in aged rats
[62, 68, 70]. Importantly, this failure was limited to re-
exposure to the same context, and was not seen with re-
exposure to a different context in a different room. In a second
task, rats explored an identical Y-maze in 2 different rooms
sequentially, and were tasked with visiting a different novel
arm in each room. Aged rats showed poorer performance rel-
ative to adults, which correlated with failure to reactivate a
similar ensemble [70]. Thus, impaired ensemble reactivation
in DG, as in CA3 (reviewed in [26]), in aged rats correlates
with poor spatial memory precision.

In sum, data from aged rats suggest that CA3 fails to ap-
propriately remap to novelty, and instead incorrectly retrieves
previous memory patterns. Although technical difficulties
have limited our ability to interrogate age-related changes in
place field maps or in pattern separation in the DG,
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considerable evidence implicates structural alterations in DG
and CA3 that may underlie inefficiencies in ensemble re-
activation and remapping in aging.

Age-Related Changes in DG–CA3 Functions in Humans

Aged individuals show specific deficits on tasks that engage
the DG–CA3 circuit. In a test evaluating recognition memory
performance with identification of complete or incomplete
novel or familiar room drawings, aged individuals showed
poor performance on discrimination of novel versus familiar
stimuli, a phenotype construed by authors to reflect impaired
pattern separation [71]. Further, aged individuals incorrectly
identified degraded, novel images as familiar, suggesting a
bias towards pattern completion, reminiscent of patient BL
[55, 71]. In another visual recognition test in which individ-
uals were presented with repeats of the same visual stimuli,
novel Bfoils^, or similar Blures^, older adults showed poor
discrimination accuracy when stimuli and lures were very
similar, and exhibited comparable performance as adults only
in discerning distinct stimuli [23, 24]. Interestingly, aged in-
dividuals exhibited increased blood oxygen level-dependent
signal in DG/CA3 in response to both original or target stim-
uli, as well as lures [24]. Older adults also required more
dissimilarity in stimuli and lures to decrease the DG/CA3
repetition-suppression effect [24, 25, 72]. Interestingly, indi-
viduals with MCI exhibited impaired discrimination of lures
and elevated DG–CA3 activity during presentation of lures
[73]. Newer approaches using ultra-high-resolution fMRI at
7 Tand multivariate pattern analysis will permit assessment of
DG and CA3 activation separately (rather than as DG–CA3)
in aged individuals and individuals with MCI using these
tasks [53].

Age-Related Changes in DG–CA3 Structure
and Connectivity

The aged hippocampus does not show loss of principal cells in
humans [74], rats [75, 76], monkeys [77], or mice [78] (reviewed
in [9]), suggesting that age-associated memory impairment is
more likely due to synapse loss and dysfunction. Consistent with
this notion, the hippocampus is reduced in size in aged humans
[79–81] (reviewed in [82]), and size correlates with deficits in
explicit memory in aged individuals [83, 84]. Within the hippo-
campus, functional imaging studies suggest that the DG is the
region most profoundly affected by aging in rats and macaques
[85] (reviewed in [82]). In rodents, there is decreased EC to DG
synapse number [86, 87] (reviewed in [88]) and decreased
perforant path presynaptic fiber potential amplitudes [89].
Furthermore, long-term potentiation at the perforant path/DG
synapse is more difficult to induce and shows reduced persis-
tence in aged rats [90] (reviewed in [91, 92]). Concomitant with
these EC-to-DG changes, there is a reduction in activity as

measured by immediate early gene induction in DG following
behavior in aged rats [70, 85, 93]. Diffusion-tensor imaging sug-
gests a reduction in perforant path connectivity fromEC toDG in
aged humans [24, 72, 94–96]. Further, this reduction correlated
with representational rigidity and poor behavioral discrimination
in aged humans [72], further supporting the idea that changes in
EC to DG connections drive aged-related impairments.

In contrast to decreased DG activation [70, 85, 93], CA3
shows hyperexcitability and elevated firing rates in rodents and
nonhuman primates [67, 97–99]. Because mossy fibers of DGCs
synapse onto inhibitory interneurons and CA3 pyramidal neu-
rons [100, 101], decreased perforant path inputs onto DG
(reviewed in [88, 92]) may reduce feed-forward inhibition from
the DG to CA3. In addition, impaired plasticity at mossy fiber–
interneuron synapses (reviewed in [102]) may underlie hyperac-
tivity in CA3 [98]. Whole-cell recordings in CA3 indicate that
the increased intrinsic excitability of aged pyramidal neurons is
accompanied by a reduction in feed-forward inhibition onto CA3
[98]. Further, the number of inhibitory interneurons, particularly
in the hilus, is reduced with age [103–105]. These findings sug-
gest altered EC–DG connectivity and feed-forward inhibition
from DG to CA3 may contribute to CA3 hyperactivation.

Adult Hippocampal Neurogenesis Decreases With Aging
and Adult-Born DGCs Contribute to Pattern Separation

New DGCs are generated from neural stem cells in the
subgranular zone of the DG throughout life (Fig. 2). Pioneering
work by Altman and Das (1965) [106] first identified adult
neurogenesis in the subgranular zone of the DG in rodents, and
more recent studies have confirmed that the DG supports adult
hippocampal neurogenesis in humans [107–111]. Adult hippo-
campal neurogenesis is exquisitely sensitive to circuit demands,
and is tightly regulated by discrete, yet overlapping, mechanisms
at multiple stages of neuronal maturation to ensure appropriate
additions to the circuit (reviewed in [112–114]). In the
subgranular zone of the adult DG, active neural stem cells give
rise to transiently active neural progenitors, which differentiate
into immature DGCs. Immature DGCs receive afferent connec-
tions in a stereotyped order [115–118], and the acquisition of
these inputs is thought to govern their survival and integration
into the hippocampus (Fig. 2) [118–122]. Adult-born DGCs be-
tween ~4 and 8 weeks of age exhibit heightened plasticity and
are hypothesized to preferentially contribute to memory process-
ing [118, 123–132].

Although adult neurogenesis declines slowly with age in
humans [110, 111], it declines precipitously in mice, with 50%
to 95% reduction between 6 weeks and 5 months (see, e.g. [118,
133, 134]; reviewed in [135, 136]). As this timeline is much
faster than the acquisition of age-related memory impairments,
it does not appear that declines in neurogenesis drives many
aspects of cognitive decline [88, 137]. Nevertheless, if
neurogenesis is important for encoding, then stimulation of
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neurogenesis may represent a therapeutic strategy to improve
encoding in aging.

Ablation of adult-born DGCs impairs performance in behav-
ioral tasks that require resolution of memory interference
[138–146] (reviewed in [147]). Abrogation or reduction of adult
hippocampal neurogenesis, or decreasing survival of adult-born
DGCs, impaired discrimination of similar contexts [139, 141,
142, 148]. In a complementary series of experiments, deleting
the proapoptotic geneBax from adult-bornDGCs, and increasing
their survival, resulted in improved contextual discrimination
[141]. Consistent with this finding, genetic silencing of the output
of the majority of mature DGCs (4–5 weeks of age and older)
resulted in improved contextual discrimination [139], suggesting
that adult-born DGCs are sufficient for this discrimination.
Interestingly, these mice were impaired in pre-exposure-
dependent contextual fear conditioning and in using partial spa-
tial cues to find a hidden platform in the water maze. These data
suggest that mature DGCs may contribute preferentially to recall
of memories based on partial cues, potentially through pattern
completion [139].

Optogenetic silencing of adult-born DGCs during memory
retrieval, or training in the contextual fear discrimination
learning task, resulted in memory impairments [126, 149].
Interestingly, silencing adult-born DGCs during re-exposure
to the trained, shock context had no effect on freezing, but
silencing adult-born DGCs during exposure to the novel
Bsafe^ context prevented discrimination [149]. This suggests
that adult-born DGCs may be required during encoding of a
novel context.

Additional evidence for a role for adult-born DGCs in re-
solving memory interference comes from tasks using the ra-
dial arm maze and Morris water maze (MWM). Clelland et al.
[138] showed that irradiation-dependent blockade of adult
hippocampal neurogenesis produced deficits in both a radial
arm maze task, in which mice had to chose a nonvisited arm
from 1 of 2 options separated by varying degrees, and a
touchscreen task in which choices varied by different spatial
separations. In a complementary experiment, running, a
proneurogenic intervention that also has other pleiotropic ef-
fects on circuitry, promoted performance on the touchscreen
task [150]. Studies using the MWM have found that ablation
of adult-born DGCs impairs spatial memory only when the
target location of the hidden platform is reversed [143, 144].
In this reversal-learning portion, there is increased interference
from the original location. Similarly, using a rotating platform
in which a shock was given only in a particular quadrant,
Burghardt et al. [145] found that ablation of adult-born
DGCs impaired learning when the shock location was re-
versed. More recently, we engineered an inducible and revers-
ible genetic system to modulate neuronal competition in the
DG and enhance integration of 5 to 8-week-old adult-born
DGCs [118]. In the MWM paradigm, increasing the popula-
tion of 5 to 8-week-old adult-born DGCs had no effect on
acquisition of initial platform location, but improved perfor-
mance on the reversal portion of the task [118]. A direct, acute
role for adult-bornDGCs in resolution ofmemory interference
comes from a study showing that optogenetic silencing of
adult-born DGCs impaired a location discrimination task only

Fig. 2 Schematic of adult hippocampal neurogenesis and opportunities
for intervention. Adult-born dentate granule cells (DGCs) arise from
neural stem cells in the subgranule zone of the DG, with activated
neural stem cells giving rise to transiently active progenitors, which
differentiate into immature DGCs. Immature DGCs form afferent and
efferent connections in a stereotyped order, and the acquisition of these
inputs (initially γ-aminobutyric acid, and then glutamatergic inputs from

the entorhinal cortex) governs their survival and integration into the
hippocampus. Opportunities for therapeutic intervention to increase the
adult-born DGC population or to mimic their effects on the circuit are
highlighted: (a) removal of age-related molecular breaks on stem-cell
activation and proliferation; (b) promoting integration of adult-born
DGCs; (c) modulating DGC connectivity to increase feed-forward and
feedback inhibition. IN Interneuron
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if the adult-born DGCs matured during the acquisition phase
of the task [132]. Thus, in rodents, substantial evidence sup-
ports a role for adult-born DGCs in behaviors requiring reso-
lution of interference, raising the question as to what are the
neural mechanisms by which adult-born DGCs contribute to
DG–CA3 circuit functions.

Circuit Mechanisms Underlying the Functions
of Adult-Born DGCs in Memory Encoding

Adult-Born DGCs Exert Feedback Inhibition Onto the DG
to Promote Sparseness

Adult-born DGCs maymodify the activity of the entire DG by
recruiting feedback inhibition that affects the mature DGC
population (Fig. 1) [151–156]. Within the DG, activation of
local interneurons is critical to limit the size of the neuronal
ensemble [157]. Several converging lines of evidence suggest
that adult-born DGCs recruit feedback inhibition. Lacefield
et al. [158] found that the synchrony of gamma oscillations
were increased in the DG of mice in which neurogenesis was
ablated, suggesting that local inhibitory microcircuits are al-
tered with ablation of adult-born DGCs. Using a genetic mod-
el to increase neurogenesis in combination with voltage-
sensitive dye imaging in slices, we showed that increasing
the adult-born DGC population decreased activity of the DG
and increased threshold of activation of mature DGCs [152].
More recently, it was shown using channelrhodopsin stimula-
tion of adult-born DGCs and whole-cell recordings that acti-
vation of the adult-born DGC population resulted in increased
feedback inhibition onto mature DGCs [155, 159].
Interestingly, feedback inhibition was driven more strongly
by 6-week-old than 4-week-old adult-born DGCs [159].
Further, middle-aged mice showed a dramatic decrease in
feedback inhibition [155]. Using similar techniques, Restivo
et al. [160] showed that activation of 6 to 8-week-old DGCs
was correlated with activation of DG interneurons.

A recent study suggested that adult-born DGCs may
modulate excitatory synaptic transmission onto mature
DGCs (and, consequently, sparseness) through neuronal
competition and redistribution of perforant path–DGC
synapses. The authors found that genetic expansion of
the adult-born DGC population by conditional deletion
of the proapoptotic gene Bax in adult neural stem cells
reduced excitatory postsynaptic currents (EPSCs) in ma-
ture DGCs. Conversely, genetically ablating adult-born
DGCs increased EPSCs in mature DGCs [161].

Analyses of DG activity in awake behaving animals fol-
lowing manipulations of adult hippocampal neurogenesis
has suggested a role for adult-born DGCs in modulating
sparseness in a mismatch-dependent manner. Burghardt
et al. [145] found that ablation of adult-born DGCs de-
creased sparseness only under conditions of high

interference (reversal learning on a rotating shock task).
In vivo recordings in the DG during this task revealed a
reversal learning-induced suppression of DGC responses
that was lost following ablation of adult hippocampal
neurogenesis [162]. Recently, we showed using cfos
catFISH that genetically enhancing adult hippocampal
neurogenesis decreased overlap between cellular ensembles
activated in response to exposure to 2 similar (high interfer-
ence), but not same or distinct (low interference), contexts.
Further, we found that mice with increased adult hippocam-
pal neurogenesis exhibited a mismatch-dependent suppres-
sion of activity in the DG [118]. Together, these observa-
tions demonstrate a role for adult-born DGCs in promoting
sparseness and population- based coding mechanisms, such
as global remapping, underlying pattern separation in the
DG (Fig. 1) [118].

Adult-Born DGCs May Modulate Feed-Forward Inhibition
in DG–CA3 Circuit

Learning induces structural changes of mossy fiber synapses
onto CA3 stratum lucidum interneurons and this form of struc-
tural plasticity correlates with memory precision [163, 164].
Maturation of adult-born DGCs is accompanied by reduction
in DGC–interneuron connectivity, as 4 to 6-week-old adult-
born DGCs exhibit greater connectivity with CA3 stratum
lucidum interneurons [160] (N. Guo and A. Sahay, unpub-
lished observations). Although adult-born DGCs recruit
feed-forward inhibition onto CA3 in vitro [159], the functional
significance of DGC–interneuron connectivity and its rela-
tionship with ensemble dynamics and population-based cod-
ing mechanisms remains poorly understood.

Clues to how adult-born DGC-dependent recruitment of
feed-forward inhibition in DG–CA3 or DGC–CA3 stratum
lucidum interneuron connectivity affects encoding come from
studies examining the impact of manipulating adult hippo-
campal neurogenesis on ensemble activation during memory
retrieval. A study using genetic ensemble labeling tools found
that ablating adult hippocampal neurogenesis (by irradiation)
or decreasing adult hippocampal neurogenesis (by a behavior-
al stressor) decreased ensemble reactivation overlap in CA3
when mice were re-exposed to the training context several
days following training [165], reminiscent of a failure to re-
trieve context-appropriate ensembles [26, 62]. These findings
are consistent with previous studies showing at a behavioral
level that blocking [166–169] or enhancing adult hippocampal
neurogenesis [170] decreases (or increases, respectively) the
strength of long-term memory. Recent work from our labora-
tory [118] showing that expansion of the population of 5 to 8-
week-old adult-born DGCs improved long-term contextual
fear memory 4 weeks following training, lends further support
to a role for adult-born DGCs in promoting long-term
memory.
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Analysis of population-based coding in CA3 using catFISH
has shed light on how adult hippocampal neurogenesis may sup-
port pattern separation in CA3. Pharmacological or genetic re-
duction of adult hippocampal neurogenesis in mice resulted in an
increase in overlap of cellular ensembles inCA3whenmicewere
exposed to similar, but not distinct, contexts. Interestingly, this
increase in overlapwas driven by increased activation of CA3, or
decreased sparseness, when mice were exposed to the second
context (Fig. 1d) [146].

Thus, adult-bornDGCsmay recruit feed-forward inhibition to
dictate ensemble dynamics underlying long-term memory and
global remapping in CA3. Further studies will delineate circuit
mechanisms by which adult-born DGCs affect CA3 ensemble
dynamics and whether increasing adult hippocampal
neurogenesis during aging is sufficient to reverse failures of ap-
propriate ensemble activation and remapping [26, 70].

Targeting Adult Neurogenesis to Improve DG–CA3
Functions in Aging

Promoting Integration of Adult-Born DGCs Into
the Hippocampal Circuit

Previous studies have suggested that that stimulating
neurogenesis throughout life improves memory in aging
[171–177] (reviewed in [178]), although the correlation between
levels of adult neurogenesis in aged animals and memory perfor-
mance is tenuous [179, 180]. We sought to address the question
of whether enhancing adult hippocampal neurogenesis in aged
mice causally improves memory. To accomplish this, we devel-
oped a strategy to modulate neuronal competition and promote
integration of adult-born DGCs without affecting olfactory bulb
neurogenesis. Immature DGCs receive afferent connections in a
stereotyped order [115–118], and the acquisition of these inputs
is thought to govern their survival and integration into the hip-
pocampus (Fig. 2) [118–122]. Activity of mature DGCs is
thought to modulate survival of 1 to 2-week-old adult-born
DGCs via hilar parvalbumin interneurons [181], whereas multi-
ple lines of evidence suggest that ~2 to 4-week-old adult-born
DGCs compete with mature DGCs to receive glutamatergic
perforant path inputs to integrate into the circuit [121, 128]
(reviewed in [113]).

We asked whether we could bias competition in favor of the
adult-born DGCs by decreasing the spine density of mature
DGCs [118]. Using an inducible and reversible genetic system,
we overexpressed a negative regulator of dendritic spines, the
transcription factor Klf9 [182], in mature DGCs. Klf9 overex-
pression decreased mature DGC spine density, and this resulted
in profound increase in survival of competing adult-born DGCs.
Virally mediated deletion of the cytoskeletal factor, Rac1, in
mature DGCs produced a similar increase in the number of im-
mature adult-born DGCs. These data support previous findings
that ~2 to 4-week-old adult-born DGCs (the age at which they

begin to receive glutamatergic inputs) are susceptible to
competition-induced cell death [121]. Furthermore, our data are
consistent with a study showing that genetic enhancement or
ablation of adult-born DGCs decreases or increases EPSCs in
mature DGCs, respectively [161].

We harnessed our genetic system to determine the impact
of enhancing adult hippocampal neurogenesis during aging on
encoding and memory precision [118]. We found that middle-
aged and aged mice with enhanced adult hippocampal
neurogenesis, unlike controls, were able to discriminate be-
tween 2 similar contexts when tested 1 day or 2 weeks after
training. In addition, we assessed population-based coding in
middle-aged mice. As with adult mice, expansion of the 5 to
8-week-old adult-born DGC population in middle-aged mice
reduced overlap between DGC ensembles activated by similar
contexts, suggesting that improved global remapping may un-
derlie the improvements in behavioral discrimination (Fig. 1).

As stated earlier, it is unlikely that declines in adult hippo-
campal neurogenesis drive age-related memory decline.
However, because adult hippocampal neurogenesis may pro-
mote Bforgetting^, or clearance of previously encoded mem-
ories [183] through neuronal competition, it is plausible that
age-associated declines in adult hippocampal neurogenesis
may drive cognitive inflexibility and impair resolution of
memory interference.

Removing the Brakes on Neural Stem Cell Activation

Adult hippocampal neurogenesis declines with age (reviewed
in [133]); however, the factors responsible for this decline are
poorly understood. Humans show a less precipitous decline
than rodents [111]. A number of reasons have been suggested
for this decline: inability of the stem cell/progenitor popula-
tions to respond to proliferative signals (exhaustion of the
stem cell niche [136], but see [184]), or reduced proliferation
[185–187], lack of proneurogenic or plasticity factors [188,
189], or the presence of factors inhibiting neurogenesis—mo-
lecular ‘brakes’ [172, 174] (reviewed in [178]). Importantly,
the aged stem cell population remains capable of increasing
neurogenesis in response to exercise, neurotrophins, and sys-
temic factors present in young blood (reviewed in [133, 178]).
Further, recent work from our laboratory suggests that the
aged neurogenic niche in the hippocampus is capable of
responding to neurogenic stimuli and local circuit changes
[118]. Overexpression of Klf9 in mature DGCs resulted in a
decrease in mature DGC spines and an ~2-fold increase in
survival of adult-born DGCs in adult, middle-aged, and aged
mice. However, Klf9 overexpression, but not elimination of
mature DGC spines alone, resulted in increased in neural stem
cell activation. This increase in neural stem cell activation was
significantly greater in middle-aged and aged mice than adult
mice, suggesting that Klf9 overexpression in mature DGCs

McAvoy and Sahay

Author's personal copy



may non-cell autonomously relieve a molecular Bbrake^ that
restrains proliferation in aged animals.

Multiple candidates for these age-related brakes have been
suggested. The technique of heterochronic parabiosis entails
surgically linking the circulatory systems of 2 animals of dif-
ferent ages, and has enabled identification of systemic factors
present in aged blood that inhibit neurogenesis in young ani-
mals [172, 174]. In addition, the increases in microglial acti-
vation or corticosteroid levels in aged animals might negative-
ly impact hippocampal neurogenesis. Microglia respond to
inflammation [190], microglial levels correlate with the extent
of neurogenesis in aged animals [191], and inhibition of mi-
croglia increased neurogenesis [192, 193], although the pic-
ture is still incomplete [194]. Further, corticosteroid levels
([195], but see [196]), and corticosteroid receptor expression
on precursor cells [197] increase in older age and prevention
of glucocorticoid-mediated effects maintains higher
neurogenesis levels in aging rats [195, 198, 199].

Towards Healthy Cognitive Aging in the Future

Stimulation of adult hippocampal neurogenesis holds poten-
tial for optimizing DG–CA3 functions to maintain memory

precision in aging, but major challenges remain (Fig. 3).
Although our work suggests that increasing the population
of adult-born DGCs in middle-aged and aged mice restores
memory precision and improves global remapping, the ques-
tion remains as to whether this strategy is applicable in
humans. Modulating competition between mature DGCs and
integrating DGCs provides selective, reversible control over
adult-born DGC survival, but strategies to accomplish this in
humans are currently lacking. However, activation of the
perforant pathway has been shown to increase the survival
of immature adult-born DGCs in mice [200], which may have
functionally similar consequences on memory precision. As
EC to DG connectivity is impaired with aging [96], such stim-
ulation in aged individuals may have beneficial effects. While
preliminary studies employing EC deep brain stimulation in
humans resulted in improved memory performance [201],
larger-scale studies have found memory impairments [202].
It is likely that further analysis and understanding of circuitry
is required for successful implementation of EC stimulation
protocols to improve memory in adulthood and aging.

Currently, several strategies identified in mice to promote
neural stem cell activation or enhance neuronal survival might
be applicable to humans. The Food and Drug Administration-

age-related memory impairments 

hippocampal pattern separation 
Deficits in

Identify age-related circuit deficits

expansion of adult 
neurogenesis improves 
hippocampal remapping
in mice

Identify strategies to stimulate adult 
hippocampal neurogenesis and 
re-engineer connectivity in humans

Does expansion of adult 
neurogenesis and circuit 
re-engineering reverse age-
related pattern separation 
endophenotypes in humans?

fMRI
PET 
NMR

E
C

 
D

G
 

C
A

3
 

human mouse 

in vivo Ca2+ 
imaging

Fig. 3 Schema for how rodent studies edify novel therapeutic
neurogenesis-based strategies to optimize dentate gyrus (DG)–CA3
circuit functions and improve memory in aged humans. Deficits in
pattern separation/completion balance in DG–CA3 are observed/
inferred in both rodents and humans, albeit at different levels of
imaging resolution. Rodent studies permit elucidation of circuit-based
mechanisms by which neurogenesis modulates DG–CA3 functions.
Identification of circuit-based mechanisms facilitates development of

strategies that target these mechanisms to promote DG–CA3 functions.
Development of novel imaging approaches to visualize adult
hippocampal neurogenesis or capture pattern separation at higher
resolution will permit evaluation of efficacy of new therapeutic
strategies. fMRI = functional magnetic resonance imaging; PET =
positron emission tomography; NMR = nuclear magnetic resonance;
EC = entorhinal cortex
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approved diabetes drug metformin was shown to increase
neurogenesis in mice [203, 204], as was the NMDA antagonist
memantine [205], which has also shown efficacy in clinical
trials for Alzheimer’s disease (reviewed in [206]). Likewise,
development of some small-molecule compounds that increase
neurogenesis in mice may prove to have the same effect in
humans [207]. Inhibition of inflammation or corticosteroids
may mitigate some age-related decline in neurogenesis in
humans as in rodents (reviewed in [208, 209]). In addition,
exercise promotes neurogenesis in mice and may have similar
effects in humans ([210]; reviewed in [211, 212]). Exercise has
beneficial effects on cognition in aged humans [213, 214], al-
though whether increased neurogenesis mediates the improve-
ments is unknown (reviewed in [215]). The beneficial effects of
exercise may be transmitted via exercise-induced, muscle-
derived factors [216, 217] that act via promotion of
neurogenesis [217].

Validation of these strategies to promote neurogenesis in
humans will require the ability to visualize adult hippocampal
neurogenesis in humans. This would allow efficient testing for
correlations between behavioral task performance and levels
of neurogenesis, with the goal of determining if increasing
neurogenesis in humans improves memory performance in
humans as it does in mice. Attempts have been made to image
neural stem cells in vivo using MRI [218], but these remain
subject to confirmation [219–221]. In addition, another study
found measures of cerebral blood volume in mice correlated
with increases in neurogenesis following exercise, and found
similar increases in cerebral blood volume in exercising
humans [222]. Another avenue is development of positron
emission tomography ligands or tracers that would afford de-
tection of neural stem cells or adult-born DGCs (Fig. 3) [223].

Increased understanding of how the connectivity of the
DG–CA3 circuit causally relates to its function will inspire
development of connectivity-based cognitive enhancers. As
adult-born DGCs may contribute to DG–CA3 function
through recruitment of inhibition, strategies to re-engineer
connectivity between mature DGCs and stratum lucidum in-
terneurons or directly promote inhibition onto CA3 neurons
may bypass the need to stimulate neurogenesis ([147] and N.
Guo and A. Sahay, unpublished observations). A note of cau-
tion: forced expression of molecules in developing circuits to
rewire them may impair their functions. Overexpressing
neuroligin-2 in adult-born DGCs increased their survival and
synaptic contacts, but impaired memory performance [119].
Ultra-high-resolution fMRI at 7 T and multivariate pattern
analysis will permit high-resolution assessment of how DG–
CA3 circuit-based strategies described above impact pattern
separation and completion in aged individuals (Fig. 3) [53].

Analysis of DG–CA3 connectivity, and age-related chang-
es at the cellular level, would be facilitated by the develop-
ment of empirical human models. The generation of human
hippocampal neurons through direct reprogramming of

fibroblasts, or directed differentiation of induced pluripotent
stem cells, holds promise to delineate the neurobiological
changes in aging at a cellular level [224, 225]. Although pro-
tocols have been pioneered to generate DGCs and inhibitory
interneurons [226–228], we know much less about the ontog-
eny and process to generate CA3 pyramidal neurons.
Ultimately, the generation of these different cell-types de novo
or within organoids [229] will catalyze generation of human
DG–CA3 circuits that permit high-resolution structure–func-
tion studies and facilitate identification of strategies to modu-
late connectivity at aged human DG–CA3 synapses. Further,
these strategies will allow assessment of the contribution of
human DGCs with different age-specific properties to excita-
tion–inhibition balance. A detailed understanding of circuit
mechanisms by which adult born DGCs contribute to
encoding functions in adulthood and aging will ultimately
edify new therapeutic strategies to combat age-related memo-
ry impairments.
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